贝叶斯公式(发表于1763年)为:
这就是著名的“贝叶斯定理”,一些文献中把P(B[1])、P(B[2])称为基础概率,P(A│B[1])为击中率,P(A│B[2])为误报率。
贝叶斯定理在检测吸毒者时很有用。假设一个常规的检测结果的敏感度与可靠度均为99%,也就是说,当被检者吸毒时,每次检测呈阳性(+)的概率为99%。而被检者不吸毒时,每次检测呈阴性(-)的概率为99%。从检测结果的概率来看,检测结果是比较准确的,但是贝叶斯定理却可以揭示一个潜在的问题。假设某公司将对其全体雇员进行一次鸦片吸食情况的检测,已知0.5%的雇员吸毒。我们想知道,每位医学检测呈阳性的雇员吸毒的概率有多高?令“D”为雇员吸毒事件,“N”为雇员不吸毒事件,“+”为检测呈阳性事件。可得
P(D)代表雇员吸毒的概率,不考虑其他情况,该值为0.005。因为公司的预先统计表明该公司的雇员中有0.5%的人吸食毒品,所以这个值就是D的先验概率。
P(N)代表雇员不吸毒的概率,显然,该值为0.995,也就是1-P(D)。
P(+|D)代表吸毒者阳性检出率,这是一个条件概率,由于阳性检测准确性是99%,因此该值为0.99。
P(+|N)代表不吸毒者阳性检出率,也就是出错检测的概率,该值为0.01,因为对于不吸毒者,其检测为阴性的概率为99%,因此,其被误检测成阳性的概率为1-99%。
P(+)代表不考虑其他因素的影响的阳性检出率。该值为0.0149或者1.49%。我们可以通过全概率公式计算得到:此概率 = 吸毒者阳性检出率(0.5% x 99% = 0.00495)+ 不吸毒者阳性检出率(99.5% x 1% = 0.00995)。P(+)=0.0149是检测呈阳性的先验概率。用数学公式描述为:
根据上述描述,我们可以计算某人检测呈阳性时确实吸毒的条件概率P(D|+):
P(D|+) = P(+|D)P(D)/(P(+|D)P(D)+P(+|N)P(N))=0.99 *0.005/0.0149=0.332215
尽管我们的检测结果可靠性很高,但是只能得出如下结论:如果某人检测呈阳性,那么此人是吸毒的概率只有大 约33%,也就是说此人不吸毒的可能性比较大。我们测试的条件(本例中指D,雇员吸毒)越难发生,发生误判的可能性越大。
但如果让此人再次复检(相当于P(D)=33.2215%,为吸毒者概率,替换了原先的0.5%),再使用贝叶斯定理计算,将会得到此人吸毒的概率为98.01%。但这还不是贝叶斯定理最强的地方,如果让此人再次复检,再重复使用贝叶斯定理计算,会得到此人吸毒的概率为99.8%(99.9794951%)已经超过了检测的可靠度。
贝叶斯定理用于投资决策分析是在已知相关项目B的资料,而缺乏论证项目A的直接资料时,通过对B项目的有关状态及发生概率分析推导A项目的状态及发生概率。如果我们用数学语言描绘,即当已知事件Bi的概率P(Bi)和事件Bi已发生条件下事件A的概率P(A│Bi),则可运用贝叶斯定理计算出在事件A发生条件下事件Bi的概率P(Bi│A)。按贝叶斯定理进行投资决策的基本步骤是:
1 列出在已知项目B条件下项目A的发生概率,即将P(A│B)转换为 P(B│A);
2 绘制树型图;
3 求各状态结点的期望收益值,并将结果填入树型图;
4 根据对树型图的分析,进行投资项目决策。
搜索巨人Google和Autonomy,一家出售信息恢复工具的公司,都使用了贝叶斯定理(Bayesian principles)为数据搜索提供近似的(但是技术上不确切)结果。研究人员还使用贝叶斯模型来判断症状和疾病之间的相互关系,创建个人机器人,开发能够根据数据和经验来决定行动的人工智能设备。